Flattr.com button
Hyperlink
Hyperlinks to external URL's
Hyperlinks to pages inside the website
- Use relative path: some thing within the site
- Use absolute path: some thing within the site. This is preferred as the text will continue to work if moved to any other file.
Table
Mult-line code block in a table cell
col1 | col2 |
---|---|
c11 |
|
c21 | c22 |
Code
$ sudo apt-get install texlive
data table
symbol | names | value | identities | mnemonic |
---|---|---|---|---|
e | Euler's constant | 2.718281828459045... | ||
π | 3.1415926 | 山巔一寺一壺酒(3.14159), 爾樂苦煞吾(26535)。把酒吃(897),酒殺爾(932),殺不死(384),樂爾樂(626)。| 要是要我酒(14159),爾樂舞扇舞(26535)。把酒吃酒散(89793),爾散把四柳(23846)。二柳似三杉(26433),拔杉爾吃酒(83279)。勿憐爾拔吧(50288),死一救其一(41971)。... | ||
τ | 6.2831853071795864769252... |
Escaping
\[\[some text\]\]
[[some text]]
x[[{1, 3}, {2, 3}]]
teximg
[[!teximg Error: <a href="./d088d89b2dcbccb799eaa48c87efbf1c.log">failed to generate image from code</a>]]
Euler's identity which have five important mathematical constants , , , , :
This is a Block level [[!teximg Error: <a href="./3095f5fc2cbe648aee1758943ae8c16e.log">failed to generate image from code</a>]] formula, and this is an inline level formula.
Footnotes
This is a sentence [1].
TeX syntax
Escape special characters in Markdown
[
escaped as\[
_
escaped as\_
*
escaped as\*
- some
\
might need to be written as\\
Examples:
The Quadratic Formula
[[!teximg Error: <a href="./5f04e4469ad3016fe9ec0d36d211fb70.log">failed to generate image from code</a>]]
The Lorenz Equations
[[!teximg Error: <a href="./1805806a095ab745b2640b02e6864290.log">failed to generate image from code</a>]]
The Cauchy-Schwarz Inequality
\[ \left( \sum_{k=1}^n a_k b_k \right)2 \leq \left( \sum_{k=1}^n a_k2 \right) \left( \sum_{k=1}^n b_k2 \right) \]
A Cross Product Formula
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \]
The probability of getting heads when flipping coins is
\[P(E) = {n \choose k} pk (1-p)^{ n-k} \]
An Identity of Ramanujan
\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
Maxwell’s Equations
\[ \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} \]
A Rogers-Ramanujan Identity
\[ 1 + \frac{q2}{(1-q)}+\frac{q6}{(1-q)(1-q2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for $|q|<1$}. \]
TeX syntax using MathJax
Escape special characters in Markdown
[
escaped as\[
_
escaped as\_
*
escaped as\*
- some
\
might need to be written as\\
Examples:
The Quadratic Formula
$$ x = {-b \pm \sqrt{b2-4ac} \over 2a} $$
The Lorenz Equations
$$ \begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned} $$
The Cauchy-Schwarz Inequality
\[ \left( \sum_{k=1}^n a_k b_k \right)2 \leq \left( \sum_{k=1}^n a_k2 \right) \left( \sum_{k=1}^n b_k2 \right) \]
A Cross Product Formula
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \]
The probability of getting heads when flipping coins is
\[P(E) = {n \choose k} pk (1-p)^{ n-k} \]
An Identity of Ramanujan
\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
Maxwell’s Equations
\[ \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} \]
A Rogers-Ramanujan Identity
\[ 1 + \frac{q2}{(1-q)}+\frac{q6}{(1-q)(1-q2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for $|q|<1$}. \]
References
- This is a footnote.↩