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ABSTRACT. We discuss practical methods for computing integer roots of sparse univariate
polynomials. The best currently known algorithm solving the problem was given in [1].
We investigate how a small change in the algorithm, namely using a different root isolation
method, would influence the computation time. It turns out that the change makes the
algorithm significantly faster in practice.

1. INTRODUCTION

Let
f = a1t

e1 + . . .+akt
ek

wheree1 > .. . > ek, andai ∈ Z\ {0}, for 1≤ i ≤ k, and let us denote

minexp( f ) := ek

Definition 1.1. The sparse derivative sequence of f , is the sequence f1, . . . , fk defined by

f1 := f/tminexp( f )

and
fi+1 := f ′i /tminexp( f ′i )

for 1≤ i ≤ k−1.

The algorithm described in [1] finds integer roots off by isolating the real roots of poly-
nomials of the sparse derivative sequence off , taken in the reverse order, up to intervals
(u,u+ 1) or [u,u], with u∈ Z. The method is based on the fact that, by Rolle’s theorem,
a polynomial can have at most one root between two consecutive roots of its derivative.
An alternative approach is to isolate the roots off directly, using a “sparse variant” of
Fourier’s theorem.

Figure 1 shows the dependence of the running time of the integer root finding algorithm
on the number of terms of the polynomial, for randomly generated polynomials of degree
1000 with 20 roots. The curve marked ROL (for Rolle) corresponds to the root isolation
method used in [1], the curve marked FOU (for Fourier) corresponds to root isolation based
on Fourier’s theorem. The method based on Fourier’s theoremis clearly faster here, and
the difference increases with the number of terms.

In the next section we investigate the reason of the observedtiming difference. We state
the variant of Fourier’s theorem we use for root isolation and estimate complexities of the
two root isolation methods.

Remark 1.2. The integer root finding algorithm described in[1], as well as the algorithm
described in[2] restricted to finding integer roots, use an exponent gap theorem (Propo-
sition 2 of [1], Proposition 2.3 of[2]) which allows to reduce the size of the polynomial
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FIGURE 1. Timings for polynomials of degree 1000 with 20 roots.
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for very sparse polynomials with relatively small coefficients. Root isolation methods dis-
cussed in this paper affect the final stage of the algorithm, when the exponent gap theorem
no longer applies. The examples used here have been chosen from the sparsity and coeffi-
cient size range for which the exponent gap theorem does not apply.

2. COMPARISON OF INTEGER ROOT ISOLATION METHODS

Let f1, . . . , fk : I → Rbe a sequence of differentiable functions defined in an open inter-
val I ⊆ R, and such that for all 1≤ i ≤ k−1, and for allx∈ I

(1) sign( fi+1(x)) = sign( f ′i (x))

and
fk(x) 6= 0

For x ∈ I , and 1≤ i ≤ j ≤ k, let sgci, j(x) denote the number of sign changes in the
sequencefi(x), . . . , f j (x) with terms equal to zero removed, and letsgc(x) := sgc1,k(x).
The following is a simple variant Fourier’s root counting theorem.

Theorem 2.1. For any a∈ I
lim

x→a+
sgc(x) = sgc(a)

and
lim

x→a−
sgc(x) = sgc(a)+ r +2s

where r∈ Z+, s∈ Z+∪{0}, and

f1(a) = . . . = fr(a) = 0, fr+1(a) 6= 0

Moreover, s= 0 unless there is t> r +1 such that ft (a) = 0.

The proof is straightforward.
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Corollary 2.2. Let f1, . . . , fk be the sparse derivative sequence of a polynomial f , let
0≤ a < b, and let1≤ p≤ k, be such that sgcp,k(a) = sgcp,k(b). Then

(1) fp has a constant nonzero sign on(a,b].
(2) sgcp,k(c) = sgcp,k(a) for any a≤ c≤ b.
(3) sgc1,p(a)−sgc1,p(b) = r +2s, where r is the number of roots of f in(a,b], counted

with multiplicities, and s is a nonnegative integer. In particular, if sgc1,p(a) =
sgc1,p(b) then f has no roots in(a,b], and if sgc1,p(a)−sgc1,p(b) = 1 then f has
exactly one root in(a,b] and sign( f (a)) 6= sign( f (b)).

Corollary 2.3. A polynomial with k> 0 nonzero terms has at most k−1 positive roots and
at most k−1 negative roots, and hence at most2k−1 real roots.

A detailed description of the root isolation algorithm using Fourier’s theorem can be
found in [3].

Let ROL be the algorithm finding integer roots using Rolle’s theorem, as described in
[1], and let FOU be a variant of the algorithm using Fourier’stheorem. Letf ∈ Z[t]\ {0},
let k be the number of nonzero terms inf , and letM be a bound for absolute value of
integer roots off , and let f1 = f , . . . , fk be the sparse derivative sequence off .

ROL isolates all real roots offk−m+1, for m= 1, . . . ,k, up to unit length intervals. This in
the worst case requires(2m−1)logM interval bisections, form= 1, . . . ,k. Hence, the total
number of interval bisections performed by ROL is at mostk2logM. On the other hand,
FOU isolates at most 2k−2 changes in value ofsgcup to unit length intervals. Hence the
total number of interval bisections performed by FOU is bounded by 2(k−1)logM.

This of course is not an entirely fair comparison, since ROL needs to compute a single
polynomial sign at each bisection, while FOU might need to computek polynomial signs.
However, Corollary 2.2 allows to reduce the number of sign computations needed. If
sgc(a)−sgc(b) = 1 then any further bisections of(a,b] need to compute only the sign of
f , and if sgcp,k(a) = sgcp,k(b), which in particular must be the case if none offp, . . . , fk
has roots in(a,b], then any further bisections of(a,b] do not need to compute the sign of
fp, . . . , fk.

In the following section we describe experiments measuringthe dependence of the num-
ber of sign computations needed on the number of polynomial terms.

3. EXPERIMENTAL RESULTS

Both variants of the algorithm have been implemented in C as apart of Mathematica
kernel. The computations have been done on a 1.8 GHz Pentium Mlaptop computer
with 1740 MB of RAM available. The results given are averagesfor sets of 10 randomly
generated polynomials. Columns marked Terms and Roots give, respectively, the average
number of terms in the polynomial and the average number of integer roots. Time is given
in seconds. Columns marked Sign Tests show the average number of polynomial sign tests
performed during root isolation.

The complexity of finding integer roots highly depends on thenumber and relative lo-
cation of the roots of polynomials in the sparse derivative sequence. To measure the de-
pendence of the numbersFOU andsROL of polynomial sign tests, used by FOU and ROL,
on the numberk of polynomial terms we kept the degree of the polynomial, thenumber of
integer roots and the method of generating factors with integer roots fixed. We variedk by
multiplying by a random sparse polynomial with a variable number of terms. It never con-
tributed integer roots other than zero, since a random sparse polynomial is very unlikely to
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TABLE 1. Polynomials of degree 1000 with 20 linear factors

Poly Terms Roots Time Time Sign Tests Sign Tests
FOU ROL FOU ROL

P1(1) 21 21 0.053 0.367 2296 22916
P1(2) 42 20 0.118 2.203 3000 79525
P1(3) 63 20 0.144 4.918 3769 153546
P1(4) 84 20 0.180 8.881 4384 244985
P1(5) 105 20 0.228 14.29 4905 353900
P1(6) 121.1 20 0.279 19.53 5367 451030
P1(7) 145.9 20 0.362 29.60 5809 616541
P1(8) 159.6 20 0.430 36.57 6227 720909
P1(9) 175.7 20 0.489 45.16 6434 851127
P1(10) 193 20 0.589 57.36 6888 1004228

TABLE 2. Polynomials of degree 10000 with 3 three-term factors with
one root each

Poly Terms Roots Time Time st# st#
FOU ROL FOU ROL

P2(1) 20 4 0.030 0.055 113 260
P2(2) 40 3 0.046 0.246 223 841
P2(4) 79.7 3 0.156 1.731 428 3054
P2(8) 159.1 3 0.366 7.272 792 10532
P2(16) 315.3 3 1.046 33.05 1260 31067
P2(32) 618.4 3 3.200 147.9 2168 108430

have integer roots, unless it has one term. We used the following two classes of randomly
generated sparse polynomials.

(1) Random sparse polynomials of degree 1000 obtained by multiplying an n-term
polynomial and 20 monic linear factors.

P1(n) = (a1t
980+

n−1

∑
i=2

ait
ei +an)

20

∏
j=1

(t − r j)

whereai andr j are randomly generated 100-bit integers,r j are all distinct, and
0 < ei < 980 are randomly generated distinct exponents.

(2) Random sparse polynomials of degree 10000 obtained by multiplying an n-term
polynomial and three degree 1001 three-term polynomials with one integer root
each.

f j(t) = a j t
1001+b jt

ej

P2(n) = (a1t
6997+

n−1

∑
i=2

ait
ei +an)

3

∏
j=1

( f j (t)− f j(r j))

wherea j , b j andr j are randomly generated 10-bit integers, and 0< ei < 6997 are
randomly generated exponents.
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TABLE 3. Polynomials with maximal number of integer roots

Poly Terms Roots Time Time Sign Tests Sign Tests
FOU ROL FOU ROL

P3(1) 2 3 3.312 3.312 199 201
P3(2) 3 5 7.857 9.418 406 596
P3(3) 4 7 13.57 19.40 613 1192
P3(4) 5 9 21.00 35.52 819 1985
P3(5) 6 11 27.35 53.70 1027 2989
P3(6) 7 13 34.60 76.53 1236 4212
P3(7) 8 15 44.69 110.9 1453 5639
P3(8) 9 17 55.05 151.9 1673 7284
P3(9) 10 19 62.33 186.4 1891 9161
P3(10) 11 21 74.98 251.9 2113 11238

Using least-squares linear fit to find the dependence oflog(s) on log(k) we found that,
for polynomialsP1(n), sFOU ∼ 469k0.506 andsROL∼ 139k1.687, and for polynomialsP2(n),
sFOU ∼ 9.4k0.856 andsROL∼ 1.35k1.757.

The next experiment we used polynomials of degree 5041 whichhave the maximal
possible (Corollary 2.3) number of real roots for a polynomial with k terms.

P3(n) = t
n

∏
j=1

(t5040/n− r5040/n
j )

As might be expected, since the number of roots grows withk, in this example the
complexity grows much faster withk previous two. However, like in the previous two
experiments, the growth exponent is significantly higher for ROL. We obtainedsFOU ∼
88k1.35 andsROL∼ 44.3k2.33.

4. CONCLUSIONS

Using root isolation based on Fourier’s theorem significantly improves practical perfor-
mance of the algorithm described in [1].
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