SOLVING SPARSE DIOPHANTINE EQUATIONS IN ONE VARIABLE

ADAM STRZEBONSKI

ABSTRACT. We discuss practical methods for computing integer robéparse univariate
polynomials. The best currently known algorithm solving froblem was given in [1].
We investigate how a small change in the algorithm, nametgus different root isolation
method, would influence the computation time. It turns oeatt the change makes the
algorithm significantly faster in practice.

1. INTRODUCTION

Let
f=ant®+... +at
wheree; > ... > g, anda; € Z\ {0}, for 1 <i <k, and let us denote
minexgd f) = e
Definition 1.1. The sparse derivative sequence of f, is the sequence ffx defined by
f1 = f/tminexpif)

and
fii1i= fi//tminexpifi’)

forl<i<k-1.

The algorithm described in [1] finds integer rootsfdby isolating the real roots of poly-
nomials of the sparse derivative sequencéd afaken in the reverse order, up to intervals
(u,u+ 1) or [u,u], with u € Z. The method is based on the fact that, by Rolle’s theorem,
a polynomial can have at most one root between two consecrdits of its derivative.
An alternative approach is to isolate the rootsfoflirectly, using a “sparse variant” of
Fourier’s theorem.

Figure 1 shows the dependence of the running time of theentegt finding algorithm
on the number of terms of the polynomial, for randomly getextgpolynomials of degree
1000 with 20 roots. The curve marked ROL (for Rolle) correggmto the root isolation
method used in [1], the curve marked FOU (for Fourier) cqrogals to root isolation based
on Fourier’s theorem. The method based on Fourier's thedsestearly faster here, and
the difference increases with the number of terms.

In the next section we investigate the reason of the obseiwéty difference. We state
the variant of Fourier's theorem we use for root isolatiod astimate complexities of the
two root isolation methods.

Remark 1.2. The integer root finding algorithm described][it], as well as the algorithm
described in2] restricted to finding integer roots, use an exponent gapréraqPropo-
sition 2 of[1], Proposition 2.3 0f2]) which allows to reduce the size of the polynomial
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FIGURE 1. Timings for polynomials of degree 1000 with 20 roots.
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for very sparse polynomials with relatively small coefiitge Root isolation methods dis-
cussed in this paper affect the final stage of the algorithhemthe exponent gap theorem
no longer applies. The examples used here have been chosethie sparsity and coeffi-

cient size range for which the exponent gap theorem doesapdy.a

2. COMPARISON OF INTEGER ROOT ISOLATION METHODS

Let fy,..., fx : | — Rbe a sequence of differentiable functions defined in an opten-i
vall C R, and suchthatforall ¥i <k-—1,andforallxel

1) sign(fi1(x)) = sign(f/(x))
and
fi(x) # 0
Forxel, and 1<i < j <Kk, let sgg j(x) denote the number of sign changes in the

sequencei(x),..., fj(x) with terms equal to zero removed, and $gf(X) := sgq k(X).
The following is a simple variant Fourier’s root countingtirem.

Theorem 2.1. For any ac< |
lim sgqx) =sgda)
x—at
and
XIirQ sgax) =sgqa) +r+2s

wherere Z., se Z, U{0}, and
fi(@=...=f(a)=0, frr1(a) #0
Moreover, s= 0 unless there ist- r + 1 such that f(a) = 0.

The proof is straightforward.
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Corollary 2.2. Let f;,..., fx be the sparse derivative sequence of a polynomial f, let
0<a<b,andletl < p <k, be such that sgx(a) = sgg k(b). Then

(1) fp has a constant nonzero sign ¢a b).

(2) sggk(c) =sgqk(a) foranya<c<b.

(3) sga,p(@) —sga, p(b) =r+2s, where ris the number of roots of f (ia, b, counted
with multiplicities, and s is a nonnegative integer. In peutar, if sgg p(a) =
sga,p(b) then f has no roots iffa, b], and if sgg p(a) — sga p(b) = 1 then f has
exactly one root irfa, b] and sigr{ f (a)) # sign(f(b)).

Corollary 2.3. A polynomial with k> 0 nonzero terms has at mostKl positive roots and
at most k- 1 negative roots, and hence at m@gt— 1 real roots.

A detailed description of the root isolation algorithm wgiRourier's theorem can be
found in [3].

Let ROL be the algorithm finding integer roots using Rolldéiedrem, as described in
[1], and let FOU be a variant of the algorithm using Fouri¢ghisorem. Letf € Z[t]\ {0},
let k be the number of nonzero terms fn and letM be a bound for absolute value of
integer roots off, and letf; = f,..., fx be the sparse derivative sequencéd of

ROL isolates all real roots df,_n,1, form=1,... k, up to unitlength intervals. This in
the worst case requiré@m— 1)logM interval bisections, fom=1,... k. Hence, the total
number of interval bisections performed by ROL is at md$bgM. On the other hand,
FOU isolates at mostk2- 2 changes in value afgcup to unit length intervals. Hence the
total number of interval bisections performed by FOU is bdeohby Zk — 1)logM.

This of course is not an entirely fair comparison, since R@kds to compute a single
polynomial sign at each bisection, while FOU might need tmpotek polynomial signs.
However, Corollary 2.2 allows to reduce the number of sigmpatations needed. If
sgda) — sgab) = 1 then any further bisections ¢4, b] need to compute only the sign of
f, and ifsgg k(@) = sgg k(b), which in particular must be the case if nonefgf..., fi
has roots in(a, b], then any further bisections ¢#, b] do not need to compute the sign of
fo,..., Tk

’ In the following section we describe experiments measutieglependence of the num-
ber of sigh computations needed on the number of polynomialg.

3. EXPERIMENTAL RESULTS

Both variants of the algorithm have been implemented in C parbof Mathematica
kernel. The computations have been done on a 1.8 GHz Pentidaptdp computer
with 1740 MB of RAM available. The results given are averafgesets of 10 randomly
generated polynomials. Columns marked Terms and Roots igigpectively, the average
number of terms in the polynomial and the average numberteger roots. Time is given
in seconds. Columns marked Sign Tests show the average nofrgmdynomial sign tests
performed during root isolation.

The complexity of finding integer roots highly depends onthenber and relative lo-
cation of the roots of polynomials in the sparse derivat@guence. To measure the de-
pendence of the numbetoy andsgop of polynomial sign tests, used by FOU and ROL,
on the numbek of polynomial terms we kept the degree of the polynomialtheber of
integer roots and the method of generating factors withgeteoots fixed. We variekl by
multiplying by a random sparse polynomial with a variablentier of terms. It never con-
tributed integer roots other than zero, since a random sgafynomial is very unlikely to
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TABLE 1. Polynomials of degree 1000 with 20 linear factors

Poly | Terms| Roots| Time | Time | Sign Tests Sign Tests|
FOU | ROL FOU ROL

21 21 | 0.053| 0.367| 2296 22916

42 20 | 0.118] 2.203| 3000 79525

63 20 | 0.144| 4918 3769 153546
84 20 | 0.180| 8.881| 4384 244985
105 20 | 0.228| 14.29| 4905 353900
121.1| 20 |0.279| 19.53| 5367 451030
1459| 20 | 0.362| 29.60| 5809 616541
159.6| 20 | 0.430| 36.57| 6227 720909
175.7| 20 |0.489|45.16| 6434 851127
193 20 | 0.589| 57.36| 6888 1004228
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TABLE 2. Polynomials of degree 10000 with 3 three-term factor$ wit
one root each

Poly | Terms| Roots| Time | Time | st# St#
FOU | ROL | FOU| ROL

P (1) 20 4 0.030| 0.055| 113 260
P(2) 40 3 0.046| 0.246| 223 841
P(4) | 79.7 3 0.156| 1.731| 428 | 3054
P(8) | 159.1| 3 0.366| 7.272| 792 | 10532
P(16) | 315.3| 3 1.046| 33.05| 1260| 31067
P(32) | 618.4| 3 3.200| 147.9| 2168| 108430

have integer roots, unless it has one term. We used the foliptwo classes of randomly
generated sparse polynomials.

(1) Random sparse polynomials of degree 1000 obtained btiplyihg an n-term
polynomial and 20 monic linear factors.

20

P(n) = (ayt%®0+ E:a;tei +an) I_L(t —r)
i= |=

wherea; andr; are randomly generated 100-bit integersare all distinct, and
0 < g < 980 are randomly generated distinct exponents.

(2) Random sparse polynomials of degree 10000 obtained Hpiging an n-term
polynomial and three degree 1001 three-term polynomialk wme integer root
each.

fit) = ajthOl-l-bjtej
n-1 3

Po(n) = (aat®"+ ;aitei +an) [1(Fi(®) = f(rj))
i= =1

whereaj, bj andr; are randomly generated 10-bit integers, and @ < 6997 are
randomly generated exponents.



SOLVING SPARSE DIOPHANTINE EQUATIONS IN ONE VARIABLE 5

TABLE 3. Polynomials with maximal number of integer roots

Poly | Terms| Roots| Time | Time | Sign Tests Sign Tests|
FOU | ROL FOU ROL
Ps(1) 2 3 3.312| 3.312 199 201
P3(2) 3 5 7.857| 9.418 406 596
Ps(3) 4 7 13.57| 19.40 613 1192
Ps(4) 5 9 21.00| 35.52 819 1985
Ps(5) 6 11 | 27.35| 53.70| 1027 2989
P3(6) 7 13 | 34.60| 76.53| 1236 4212
Ps(7) 8 15 | 44.69| 110.9| 1453 5639
P3(8) 9 17 |55.05|151.9| 1673 7284
P3(9) 10 19 | 62.33| 186.4| 1891 9161
P3(10) | 11 21 | 74.98| 251.9| 2113 11238

Using least-squares linear fit to find the dependendegif) onlog(k) we found that,
for polynomialsPy(n), scou ~ 46K%5%¢ andszoL ~ 13%1-87, and for polynomial®s(n),
SFou ~ 9.4k0'856 andsROLN 1.35kl'757.

The next experiment we used polynomials of degree 5041 whae the maximal
possible (Corollary 2.3) number of real roots for a polynahwith k terms.

n
Pa(n) =t [ (%49 —r}70")
=1
As might be expected, since the number of roots grows Wit this example the
complexity grows much faster witk previous two. However, like in the previous two
experiments, the growth exponent is significantly higherROL. We obtainedsroy ~
88k1-3° andsgop ~ 44.3k%33,

4. CONCLUSIONS

Using root isolation based on Fourier’s theorem signifilyainiproves practical perfor-
mance of the algorithm described in [1].
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