
SOLVING ALGEBRAIC INEQUALITIES

ADAM STRZEBOŃSKI

ABSTRACT. We study the problem of solving, possibly quantified, systems of real al-
gebraic equations and inequalities. We propose a way of representing solution sets in a
computer algebra system and present an algorithm for computing the representation. We
also discuss specialized algorithms for solving several important special cases, including
finding “generic solutions”, deciding existence of solutions, global optimization of alge-
braic functions subject to algebraic constraints, and solving linear equation and inequality
systems. Finally, we give some examples and present resultsof some experiments with our
implementation of the algorithms withinMathematica.

1. INTRODUCTION

Let us first state the main problem in precise terms. To this end, let us explain what do
we mean by a system of real algebraic equations and inequalities.

Definition 1.1. A basic algebraic function given by a polynomial f(x1, . . . ,xn,y) and an
integer k is the function

Rooty,k f : lRn ∋ x1, . . . ,xn −→ Rooty,k f (x1, . . . ,xn) ∈ lR

where Rooty,k f (x1, . . . ,xn) is the k-th real root of f(x1, . . . ,xn,y) treated as a univariate
polynomial in y. The function is defined for those values of x1, . . . ,xn for which f(x1, . . . ,xn,y)
has at least k real roots. The real roots are ordered by the increasing value, counting mul-
tiplicities.

A real algebraic function is an arbitrary composition of polynomials, basic algebraic
functions, and rational powers. The domain of a real algebraic function f is a set of those
points inlRn, for which all basic algebraic functions in f are defined, allnegative powers
in f have non-zero bases, and all non-integer rational powers in f have non-negative real
arguments.

A system of real algebraic equations and inequalities in variables x1, . . . ,xn is an alter-
native of conjunctions of

fk(x1, . . . ,xn)ρkgk(x1, . . . ,xn)

where eachρk is one of<,≤,≥,>,=, or 6=, and each fk and gk is a real algebraic function.
A point(a1, . . . ,an)∈ lRn is a solution of the system if for at least one term of the alternative,
the point belongs to the domain of all algebraic functions inthis term, and satisfies all the
equations and inequalities in this term.

Example 1.2. We do not require that a solution must belong to domains of allalgebraic
functions in the entire system . For instance the solution set of

x≥ 0∧
√

x < 1∨x< 0∧
√
−x < 1

is−1 < x < 1, even though only0 belongs to domains of both radicals.

Date: January 4, 1999.

1



2 ADAM STRZEBOŃSKI

Definition 1.3. A quantified system of real algebraic equations and inequalities in free
variables x1, . . . ,xn and quantified variables t1, . . . ,tm is a logical formula of the form

Q1t1 . . .QmtmS(t1, . . . ,tm;x1, . . . ,xn)

Where Qi is ∃ or ∀, and S is a system of real algebraic equations and inequalities in
t1, . . . ,tm,x1, . . . ,xn.

By Tarski’s theorem (see [14]), solution sets of, possibly quantified, real algebraic equa-
tion and inequality systems are semialgebraic. (Algebraicfunctions can be successively
replaced with new variables, and the condition of being thek-th root of a polynomial can
be written as a quantified polynomial equation and inequality system.) In particular they
need not to be finite so we cannot enumerate them. Instead by solving a system we will
mean finding a description of the solution set in some simple and useful standard form
not containing quantifiers. We claim that such a simple and useful form is the cylindri-
cal solution form described below, and in the following sections we will give examples
showing how the form is useful for instance in global optimization of algebraic functions
subject to algebraic constraints, computing multidimensional integrals, and visualization
of semialgebraic sets.

Definition 1.4. A cylindrical form in variables xk, . . . ,xn with parameters x1, . . . ,xk−1 is
defined recursively to be

B1∧C1∨ . . .∨Bm∧Cm

where Ci is a cylindrical form in variables xk+1, . . . ,xn with parameters x1, . . . ,xk, and Bi

is one of

f (x1, . . . ,xk−1) ρ xk σ g(x1, . . . ,xk−1)
f (x1, . . . ,xk−1) ρ xk

xk σ g(x1, . . . ,xk−1)
xk = g(x1, . . . ,xk−1)

true

where f and g arebasicalgebraic functions, andρ andσ are < or ≤. A cylindrical form
in no variables is the Boolean constant true.

A cylindrical solution form of an equation and inequality system

Q1t1 . . .QmtmS(t1, . . . ,tm;x1, . . . ,xn)

is a cylindrical form in variables x1, . . . ,xn with no parameters describing the solution set
of the system.

In our implementation basic algebraic functions are represented byMathematicaRoot
objects. (See [15], [13].Mathematica4.0 no longer factors the defining polynomials of
non-constant Root objects.) Basic algebraic functions given by polynomials of degree less
than three are represented in terms of rational functions and square roots.

Example 1.5. A cylindrical solution form of x2 +y2+z2 < 1 is

−1 < x < 1∧−
√

1−x2 < y <
√

1−x2∧
−

√

1−x2−y2 < z<
√

1−x2−y2

A cylindrical solution form of

∃x : x8 +ax+b= 0∧−1 < x < 1



SOLVING ALGEBRAIC INEQUALITIES 3

is
a≤−8∧−1+a< b < −1−a∨
−8 < a≤ 0∧−1+a< b≤ r(a)∨
0 < a < 8∧−1−a< b≤ r(a)∨

a≥ 8∧−1−a< b < −1+a

where r(a) = Rooty,1(−823543a8+16777216y7).

The Cylindrical Algebraic Decomposition (CAD) algorithm (see [2], [1]) is a construc-
tive proof of the fact that every semialgebraic set, and hence every solution set of a quanti-
fied algebraic equation and inequality system, can be represented by a cylindrical solution
form. In Section 2 we present an algorithm (based on CAD) allowing to compute such
representation. Next, we describe several simpler algorithms that can be used in some
important for applications special cases. Finally, we willshow some experimental results.

2. THE MAIN ALGORITHM

The input is a quantified system

Q1t1 . . .QmtmS(t1, . . . ,tm;x1, . . . ,xn)

of real algebraic equations and inequalities in free variablesx1, . . . ,xn and quantified vari-
ablest1, . . . ,tm, wherem may be zero. The algorithm computes a cylindrical solution form
of the system.

2.1. Polynomialization. First we successively replace algebraic functions with newvari-
ables, starting with the innermost basic algebraic functions or radicals. When replacing
Rooty,k f (x1, . . . ,xn) with a new variablez, we add the equationf (x1, . . . ,xn,z) = 0 to all
terms of the alternativeSwhich contained the replaced basic algebraic function. Similarly,
we replace a radicalf p/q with zp and add the equationzq = f and the inequalityf ≥ 0 to
all terms of the alternativeSwhich contained the replaced radical. We keep track of which
variables replace what algebraic functions and of the orderin which they were replaced.

Next, we put all equations and inequalities in the formf < 0, f ≤ 0, f = 0, or f 6= 0,
put all rational functions in the “common denominator” form, and replace equations and
inequalities involving rational functions using equivalences

f/g < 0 ⇔ f > 0∧g < 0∨ f < 0∧g> 0
f/g≤ 0 ⇔ f ≥ 0∧g < 0∨ f ≤ 0∧g> 0
f/g = 0 ⇔ f = 0∧g 6= 0
f/g 6= 0 ⇔ f 6= 0∧g 6= 0

Finally, we put the, now polynomial, equation and inequality system in the disjunctive
normal form.

2.2. Projection. This is the projection phase of the CAD algorithm (see [2], [1]). First we
project with respect to the variables replacing algebraic function, in the reverse replacement
order. Then we project the quantified variables starting with the innermost quantifiers
i.e. from tm to t1. Finally, we project out free variablesxn throughx2. We can reorder
variables within blocks of identical quantifiers and withinthe free variables if we do not
have a preference as to the order of free variables in the solution. In this case we use a
heuristics attempting to minimize the size and degrees of the projection. We use two types
of projection.

We start with the “short projection”. If there are any equational constraints present or
if the projected variable replaces an algebraic function, we use the equational constraint



4 ADAM STRZEBOŃSKI

case projection suggested in [3]. If there are several equational constraints, we select the
pivot (and the projection variable, if we have a choice) based on first whether its all factors
have constant leading coefficients, and second on how low is its degree. Equational con-
straints with nontrivial contents are disqualified. We propagate the remaining equational
constraints using the fact that a resultant of equational constraints is an equational con-
straint. After we run out of replacement variables and equational constraints we continue
with the McCallum’s projection operator for well-orientedsets of polynomials (see [7],
[8]).

The solution form construction phase may fail if the short projection was used, and
one of the polynomials of McCallum’s projection becomes identically zero on a positive-
dimensional cell, or if an equational constraint used as a pivot becomes identically zero on
a cell. In this case we use the full projection operator described in [5].

2.3. Construction of solution form. Since we are using algebraic functions to describe
the solution set we, as opposed to the classical CAD algorithm, do not need to generate
and store all the cells before constructing the solution form. Therefore we can use the
following recursive algorithm RCSF which, on thek-th recursion level, generates the solu-
tion form for the firstk variables (in the inverse projection order) belonging to a specified
cell. (Remember, in this order the free variables come first,then the quantified variables,
outermost quantifiers first, and at the end the variables replacing algebraic functions, in the
replacement order.) To generate the full solution we call RCSF on the 0-th recursion level.

Algorithm 2.1. RCSF

Input:

• cell_datacontains information about the cell over which we are constructing the
solution. This includes a sample point in the cell, i.e. values for the firstk vari-
ables, and information whether the cell is zero-dimensional and which (not all)
elements of the alternative inSare marked as known to bef alseon the cell.

• proj_datacontains all the information from the first two phases of the algorithm,
i.e. information about the system of polynomial equations and inequalitiesS, the
variables replacing algebraic functions, the subsequent projection types, projection
variables, quantifiers, and sets of projection polynomials.

Output:

• A formula representing solutions of the system, for the firstk variables belonging
to the input cell. If thek+1 -st variable is a free variable, it is a cylindrical form
in the free variables left, with the firstk variables as parameters. Otherwise it is
trueor f alse.

(1) Letv be thek+1 -st variable.
(2) If v is a variable replacing a basic algebraic functionRooty,p f , find the real roots

of f in y, after replacing the firstk variables with coordinates of the sample point.
(The chosen projection order guarantees thatf after the replacement becomes a
univariate polynomial.) If there are at leastp roots, counting multiplicities, choose
thep-th root as thek+1-st coordinate of the sample point, and check if substitution
of the new sample point makes any more elements of the alternative in S f alse.
Otherwise, choose 0 as thek+ 1-st coordinate and mark all the elements of the
alternative inSwhich containv as known to bef alseon the cell. If all the elements
of the alternative inSare known to bef alseon the cell returnf alse. If v was the
last variable returntrue, else callRCSFrecursively.



SOLVING ALGEBRAIC INEQUALITIES 5

(3) If v is a variable replacing a radicalf 1/q, let a be f with the first k variables
replaced with the coordinates of the sample point. The orderof projection chosen
guarantees thata is a constant. Ifa is nonnegative, choose thek+1-st coordinate
of the sample point to bea1/q, and check if substitution of the new sample point
makes any more elements of the alternative inS f alse. Otherwise choose the
coordinate to be 0 (sincef ≥ 0 was included in all elements of the alternative
containingv, these elements are already marked as known to bef alse). If all the
elements of the alternative inSare known to bef alseon the cell returnf alse. If
v was the last variable returntrue, else callRCSFrecursively.

(4) If v was projected out using an equational constraint letpts be all the real roots
of factors of the pivot, after replacing the firstk variables with coordinates of the
sample point. Otherwise, letptsbe a set of all the real roots of thek+ 1-variate
projection polynomials, after replacing the firstk variables with coordinates of the
sample point, and of rational points, one in every interval left after removing the
roots from the real line. The algorithm can fail at this pointif v was projected out
using an equational constraint and any of factors of the pivot becomes identically
zero after the substitution, or if the McCallum’s projection was used, the cell is
not zero-dimensional, and one of the projection polynomials becomes identically
zero after the substitution. In this case we start over with the full projection. If
the McCallum’s projection was used, the cell is zero-dimensional, and one of the
projection polynomials becomes identically zero after thesubstitution we use a
suitable derivative instead, as described in [8].

(5) Take the subsequent elements ofptsas thek+1-st coordinates of the sample point,
and determine the solution of the system over the corresponding cell. First check
if substitution of the new sample point makes any more elements of the alternative
in S f alse. If all the elements of the alternative inSare known to bef alseon the
cell the solution isf alse. If v was the last variable, the solution istrue. Otherwise
we compute the solution callingRCSFrecursively.

(6) If v is a quantified variable we may return the answer without looking at all the
pts. The possible solutions of the system over the cells corresponding to elements
of ptsaretrue and f alse, since all the remaining variables are quantified. Ifv is
quantified by the existential quantifier and a solution over the cell corresponding
to one of thepts is true we returntrue. If v is quantified by the general quantifier
and a solution over the cell corresponding to one of thepts is f alse we return
f alse. If we went through all theptswithout returning early we returnf alsefor
the existential quantifier andtrue for the general quantifier. Because in this case
we may find the answer without looking at allptswe want to try the easier cases
first. To this end we take the elements ofpts in 5. in order of increasing degrees
of their minimal polynomials.

(7) We are left with the case whenv is a free variable. The polynomials used in 4. to
computeptsare delineable on the cell, therefore the different real roots of these
polynomials on the cell are values of non-intersecting basic algebraic functions
given by these polynomials. We keep track of the basic algebraic function cor-
responding to each root, and so we can write the part of answercorresponding
to each of the elements ofpts as the conjunction of one ofv = f , f < v < g,
v < f , andv> f , and the solution of the system over the cell corresponding to the
element, wheref andg are the basic algebraic functions corresponding to the ap-
propriate roots. Ifv was projected out using an equational constraint we return the



6 ADAM STRZEBOŃSKI

alternative of the constructed parts of the answer, else if the solutions of the sys-
tem over the cells corresponding to adjoining elements ofptsare identical we join
the corresponding parts of the answer and return the alternative of the resulting
formulas.

For finding roots of polynomials with algebraic number coefficients we use the algorithm
described in [12], modified to compute real roots only. To avoid repeating computations
we cache resultant, factorization, and real root isolationcomputations.

The recursive nature of the algorithm and joining of the cells which can be joined in
7. results in a much lower memory usage of our algorithm than that of the classical CAD
algorithm. In practice we have not seen an example in which the space complexity rather
than the time complexity would be the main limitation. Step 5. of the algorithm allows
parallelization of computations, however our implementation is purely sequential.

3. THE FULL DIMENSIONAL CASE

An important category of problems for which the algorithm can be substantially sim-
plified is when the solution set of the inequality system is open, or when we are interested
only in the full dimensional part of the solution set. One such case is the decision problem
for systems of strong polynomial inequalities, i.e. the problem of deciding whether an open
semialgebraic set is nonempty. In this case the original system contains only strong poly-
nomial inequalities and all variables are existentially quantified. In [9] McCallum noticed
that it suffices to construct sample points in full dimensional cells only, thus eliminating
the need for any algebraic number computations. In [11] the author has shown that in this
case we can also use a simpler projection operator. Here we present an extension of this
idea to systems containing free variables.

Suppose we have a system of real polynomial inequalities (noequations, algebraic func-
tions, or quantifiers). In some applications, like multidimensional integration or graphical
visualization, it may be enough to know a “generic” solutionset, which is correct “up to a
lower dimensional set”. Let us be more precise.

Definition 3.1. Let S be a system of real polynomial inequalities in n variables, and let
A⊆ lRn be the solution set of S. A semialgebraic set B⊆ lRn is a generic solution set of S
if the error set A\B∪B\A is at most n−1-dimensional.

The following algorithm computes a generic solution set, and gives an at mostn− 1-
dimensional set containing the error set.

Algorithm 3.2. GCAD

Input:

• A systemSof real polynomial inequalities.
• A cylindrical solution formula describing a generic solution set ofS, and a set of

equations, such that the error set is contained in the union of their zero sets.

Output:

• A cylindrical solution formula describing a generic solution set ofS, and a set of
equations, such that the error set is contained in the union of their zero sets.

Let us first note that ifScontains weak inequalities or inequations, andS′ is Swith weak
inequalities replaced with their strong versions and inequations removed, then a generic
solution setB of S′ is a generic solution set ofS, and the error set ofB as a solution ofS is
contained in the union of the error set ofB as a solution ofS′ and the zero sets of equations



SOLVING ALGEBRAIC INEQUALITIES 7

corresponding to the weak inequalities and the inequations. Therefore in the following we
may assume thatSconsists only of strong inequalities.

For a set of polynomialspolys, let SFRP(polys) denote a set of square-free and rela-
tively prime polynomials multiplicatively generatingpolys. For a set of square-free and
relatively prime polynomialsqolys, let GP(qolys,v) denote the projection ofqolyswith
respect tov used in [12]. By definition,GP(qolys,v) consists of the leading coefficients,
discriminants, and pairwise resultants ofqolys.

Let Sbe a system of strong polynomial inequalities in variablesx1, . . . ,xn, transformed
to a form with zero right hand sides of inequalities, and letpolysbe the set of left hand
sides of inequalities inS. First we compute the set of projectionspro js= (prn, . . . , pr1),
whereprn = SFRP(polys) andprk = SFRP(GP(prk+1,xk+1)). Then we obtain the solu-
tion formula and the equations for the error set calling the following recursive algorithm
with k = 0.

Algorithm 3.3. RGCSF

Input:

• f pro js= (prn, . . . , prk+1)
• epro js is f pro js with x1, . . . ,xk replaced with the (rational number) coordinates

of a sample point of thek-dimensional cellc over which we are constructing the
solution. All polynomials ofprk have constant non-zero signs onc.

• ineqsis Swith x1, . . . ,xk replaced with the coordinates of the sample point.

Output:

• A cylindrical form c f m in xk+1, . . . ,xn with x1, . . . ,xk as parameters, and a set
eqnsof polynomials inx1, . . . ,xn such that for any pointa = (a1, . . . ,an), with
(a1, . . . ,ak) in the cell, ifa is not a zero of any ofeqnsthena is a solution ofS iff
a is a solution ofc f m.

(1) If ineqsis trueor f alsewe returnineqsand no equations.
(2) Let psbe the last element ofepro js. ps is a set of univariate polynomials inxk+1.

Isolate roots ofps, and find rational numberspts one in every interval left after
removing the roots from the real line.

(3) Polynomialsprk+1 are delineable onc. (Their leading coefficients, discriminants,
and pairwise resultants have constant non-zero signs, so they have a fixed number
of real roots each and the roots do not intersect.) Hence the real roots of these
polynomials onc are values of non-intersecting basic algebraic functions given by
these polynomials. If we take the subsequent elements ofptsas thek+1-st coor-
dinates of sample points, we get sample points ofk+1-dimensional cells on which
elements ofprk+1 have constant non-zero signs. We callRGCSFrecursively on
each such cell.

(4) We can write the cylindrical form corresponding to each element ofptsas a con-
junction of one off < v < g, v < f , andv > f , and the cylindrical form returned
by the recursive call, wheref andg are the basic algebraic functions correspond-
ing to the appropriate roots. Aseqnswe return all the polynomials given by the
recursive calls, and all elements ofprk+1 whose root separates two adjoining cells
over whichS has solutions. If for cells corresponding to adjoining elements of
pts the cylindrical forms returned by the recursive calls are identical we join the
corresponding cylindrical forms in the answer. We return the alternative of the
resulting formulas.



8 ADAM STRZEBOŃSKI

Example 3.4. GCAD was used by Roger Germundsson in InequalityGraphics package.
Here is a graphical representation of the solution set of inequality system

x2 +y2 +z2 ≤ 9∧y2 ≤ x2 +z2−1

-2
0

2

-2
-1

0
1

2

-2

0

2

-2
-1

0
1

2

As another application of theGCADalgorithm we can compute the volume of the figure
above, which is 64π/3. Here the integration is by far more time consuming than the
GCADcomputation. We can also use the cylindrical solution form to compute the volume
numerically. (The results of numerical and symbolic computation do agree.)

4. GLOBAL OPTIMIZATION

The problem we investigate in this section is to find the infimum of values of a real
algebraic functionf (x1, . . . ,xn) subject to algebraic equation and inequality constraints
S(x1, . . . ,xn), and, if possible, find a point in which the infimum is attained. (If the solution
set ofS is not compact the infimum may not be attained.)

The problem is equivalent to finding the infimumyin f of values of the new variable
y on the solution set of the following quantified system of realalgebraic equations and
inequalities,

∃(x1, . . . ,xn) : S(x1, . . . ,xn)∧y≥ f (x1, . . . ,xn)

and if possible a point(a1, . . . ,an) satisfying the constraintsSand such thatyin f = f (a1, . . . ,an).
For this purpose we use a modified version of the Main Algorithm. We use the identical

polynomialization and projection phases. The last projection gives us a set of univariate
polynomials iny. In step 5. of first call toRCSF, with the main variabley, we orderpts
with respect to their increasing values, and callRCSFrecursively with subsequent elements
of ptsuntil we get answertrue. We also modifyRSCFto return a sample set of values for
existentially quantified variables which satisfies the system. If the smallest element ofpts,
for which we gettrue from the recursive call, is a root of one of the projection polynomials,



SOLVING ALGEBRAIC INEQUALITIES 9

then it is the infimum and the sample point returned by the recursive call is a point at which
the infimum is attained. Otherwise the infimum is equal to the largest root of one of the
projection polynomials smaller than the element ofpts, or−∞ if there are no smaller roots,
and the infimum is not attained.

To find an infimum of a polynomial or a rational function subject to strong polynomial
inequality constraints (or if we know that the set of points satisfying the constraints is
contained in the closure of its interior), we can use a simpler algorithm based on ideas from
Section 3. We project out variablesx1, . . . ,xn using the projection described in Section 3,
find rational numberspts one in every interval left after removing the roots of the last
projection from the real line, and then run recursively a modification of RCSF,with all
x1, . . . ,xn existentially quantified, over the subsequentpts in order of increasing values,
until we gettrue. Then the infimum is equal to the largest root of one of the projection
polynomials smaller than the current element ofpts, or −∞ if there are no smaller roots.
The modifiedRCSFconstructs only full dimensional cells, i.e. in step 4. takes only the
rational numbers between the roots of projection polynomials.

5. THE LINEAR CASE

For linear decision problem, i.e. for solving quantified equation and inequality systems
with all variables existentially quantified and all equations and inequalities linear we use a
method based on the Simplex algorithm from Linear Programming. Since

∃x : a(x)∨b(x) ⇔∃x : a(x)∨∃x : b(x)

we may assume that the system is a conjunction of equations and inequalities. We use the
following algorithm.

Algorithm 5.1. LINSIM

Input:
• A systemSwhich is a conjunction of linear equations and inequalitiesin x1, . . . ,xk.

Output:
• true or f alse depending on whetherS has solutions. If the answer istrue the

algorithm can also give a point(a1, . . . ,an) satisfying the systemS.

(1) As in the Simplex algorithm, we add new variables to replace inequalities with
equations, with the only difference being that for strong inequalities we require
that the new variables be strictly positive.

(2) We Gaussian eliminate the original unrestricted variables. We get a linear system
LS+ of equations in positive and non-negative variables, and anupper-triangular
matrix which allows to find values of the original variables,once we have a solu-
tion of LS+.

(3) We use the first phase of the Simplex algorithm to find a solution of LS+ with all
variables nonnegative. If there is no such solution we return f alse.

(4) We look if there is a variable which should be positive, but is zero in the solution.
If no we compute the values of the original variables from thematrix in step 2.
and returntrue. Otherwise we use the second phase of Simplex algorithm to find
the maximal valuemaxof the variable.

(5) If max= 0 we returnf alse. Otherwise we set the value of the variable tomax/2
(the solution set of a conjunction of linear equations and inequalities is convex),
use the first phase of Simplex algorithm to find non-negative solutions for the
remaining variables, and go to step 4.



10 ADAM STRZEBOŃSKI

In [6] Loos and Weispfenning describe an algorithm which allows to eliminate a quantifier
if all the equations and inequalities of the system are linear in the quantifier’s variable. The
result of the elimination however is not given in the cylindrical form. We use this algorithm
as a preprocessor to the main algorithm, i.e. we eliminate the innermost quantifiers if the
system is linear in their variables and then call the main algorithm on the result. In the last
section we compare this approach with the main algorithm without the linear preprocess-
ing. We also use this algorithm whenever we do not insist on the cylindrical form of the
result (for example because there are too many free variables in too high degrees).

6. EXPERIMENTAL RESULTS

In this section show some experimental results obtained with our implementations of
the algorithms presented in this paper. The algorithms wereimplemented in the C kernel
of Mathematica.The examples were run on a Pentium II, 233 MHz computer with 64MB
of RAM. The timings are in seconds.

6.1. The full solution vs. the generic solution.Here we use strong inequality examples
given in [9] . We compare the timings of deciding the problemswith all variables exis-
tentially quantified (theDEC column), finding a cylindrical solution form using the Main
Algorithm (theMAIN column), and finding a cylindrical solution form for a generic solu-
tion set using theGCADalgorithm (theGCADcolumn). The cylindrical forms are com-
puted in the(x,y,z) order of variables. The#c columns give the total number of cells after
putting the solutions given byMAIN andGCAD in the disjunctive normal form (answer
f alsecounts as no cells). The#ecolumn gives the number of equations whose solutions
cover the error set, as given by theGCADalgorithm. Following the notation of [9] let us
put.

B1 = x2 +y2+z2 < 1

B2 = (x−1)2+(y−1)2+(z−1)2 < 1

B3 = (x−1)2+(y−1)2+(z+
1
2
)2 < 1

B4 = (x− 3
2
)2 +(y−2)2+z2 < 1

C1 = x2 +y2+z2 +2yz−4y−4z+3< 0∧
y−1 < z∧z< y+1

C2 = x2 +y2+z2 +2yz−4y−4z+3< 0∧
y+1 < z∧z< y+2

T = z4 +(2y2+2x2+6)z2 +y4+2x2y2−
10y2 +x4−10x2+9 < 0

HB1 = B1∧x+y+z< 0

HB2 = B2∧x+y+z> 3

HB3 = B3∧x+y+z<
3
2

HT = T ∧x+y< 0

The decision algorithm uses a heuristic to determine the order of projection, and because
of this the timings ofDEC andGCADmay differ even if there are no solutions.



SOLVING ALGEBRAIC INEQUALITIES 11

inequalities DEC MAIN #c GCAD #c #e

B1∧B2 0.11 3.92 1 0.17 1 0
B1∧B4 0.09 0.67 0 0.08 0 0

B1∧B2∧B3 0.91 73.05 2 1.32 2 3
B1∧B2∧B4 0.92 30.45 0 0.59 0 0

B1∧C1 0.11 17.62 1 0.65 1 1
B1∧C2 0.16 31.62 0 0.92 0 0
T ∧C1 0.58 774.8 17 5.55 9 8
T ∧B2 0.7 >3000 ? 1.1 1 2

HB1∧HB2∧HB3 12.23 415 0 3.76 0 0
HT ∧HB2∧HB3 9.72 >3000 ? 6.99 0 0

T ∧C1∧B2 2.53 >3000 ? 30.79 28 31
HT ∧C1∧HB2 29.2 >3000 ? 19.74 0 0

TABLE 1. Strong inequalities

6.2. Equational constraints. We compare timings of the Main Algorithm (MAIN) and a
version of the algorithm which does not use the special case projection using equational
constraints (NOEQC).

(1) Catastrophe Surface and Sphere from [8]

x2 +y2+z2 = 1∧z3 +xz+y= 0

MAIN returns a solution containing 8 cells after 1.18 seconds.NOEQCreturns a
solution containing 16 cells after 81.26 seconds.

(2) Solotareff’s problem from [8]

∃b∃u∃v : −1 < u < v < 1∧b< 2∧
u4 +2u3−au2−bu+a+b−3= 0∧
v4 +2v3−av2−bv+a−b+1= 0∧

4u3+6u2−2au−b= 0∧
4v3 +6v2−2av−b= 0

Both algorithms returna = Rooty,1(81y3−180y2+448y−432), MAIN after 1.86
seconds,NOEQCafter 41.21 seconds.

(3) When the quinticx5 +ax2+bx+c has at least two different real roots?

∃x∃y : x5 +ax2+bx+c= 0∧y5+ay2+by+c= 0∧x 6= y

Both algorithms return a solution consisting of 4 cells,MAIN after 21 seconds,
NOEQCafter 371 seconds. The solution is

a < 0 ∧ (b < r(a)∧ r1(a,b) ≤ c≤ r2(a,b)∨
b = r(a)∧ r3(a,b) ≤ c≤ r4(a,b)∨
r(a) < b < s(a)∧ r1(a,b) ≤ c≤ r2(a,b))∨

a≥ 0 ∧ b < s(a)∧ r1(a,b) ≤ c≤ r2(a,b)



12 ADAM STRZEBOŃSKI

where

r(a) = Rooty,1(320y3+27a4)

s(a) = Rooty,1(80y3−27a4)

rk(a,b) = Rooty,k(3125y4+2250a2by2−1600ab3y+

108a5y+256b5−27a4b2)

(4) When the difference between the largest and the smallestroot of the cubicx3 +
ax+b is at least 1?

Rooty,3(y
3 +ay+b)−Rooty,1(y

3 +ay+b)≥ 1

Both algorithms return

a≤− 1
3 ∧

−2
√

−a3

3
√

3
≤ b≤ 2

√
−a3

3
√

3
∨− 1

3 < a < − 1
4 ∧

−
√

−4a3−9a2−6a−1
3
√

3
≤ b≤

√
−4a3−9a2−6a−1

3
√

3
∨

a = − 1
4 ∧b = 0

MAIN after 2.46 seconds,NOEQCafter 9.12 seconds.

6.3. Global optimization. Here we use our global optimization algorithm and discuss the
use of its two versions, one constructing all cellsACGOand the other constructing only
the full dimensional cellsFDGO.

(1) A geometric problem from [10]. Find all values ofk for which the inequality

a3 +b3+c3 ≥ 3abc+k(a−b)(b−c)(c−a)

is true for alla, b, andc sides of a triangle. Since by permutation ofa, b, andc we
can change the sign of the coefficient atk, we see that the allowable values fork
form an interval symmetric with respect to zero. Therefore it is enough to compute
the maximum ofk for which the inequality is true for alla, b, andc, which is the
same as the infimum ofk for which there area, b, andc, such that the opposite
inequality is true. So we need to compute the infimum ofk on

a > 0∧b > 0∧c> 0∧k > 0∧
a < b+c∧b< c+a∧c< a+b∧

a3 +b3+c3 < 3abc+k(a−b)(b−c)(c−a)

We have strong inequalities only, so we can useFDGO, which returnsRooty,2(y4−
72y2− 432) after 12.35 seconds. In radicals, the answer is 2

√

9+6
√

3. ACGO
did not do this example in an hour.

(2) Maximize
√

x+
√

y on the ellipsex2

4 + y2

9 = 1. We can solve the problem directly
usingACGO in 2.32 seconds, or we can notice that the maximum is equal to the

supremum ofx+ y on x4

4 + y4

9 < 1, which we can compute usingFDGO in 0.12
seconds. The answer isRooty,1(y12−39y8−465y4−2197), with ACGOwe also
get a point at which the maximum is attained, withFDGO we don’t.

(3) Find the minimal distance between the largest and the smallest root of the cubic
x3 +ax+b assuming the cubic has three real roots and its discriminantis−1. We
need to useACGOhere. We get the answer 22/3 for a = −2−2/3 andb = 0, after
5.58 seconds.



SOLVING ALGEBRAIC INEQUALITIES 13

example #v #ln cc deg #in dns MAIN LWPP

1 3 1 no 2 2 0.3 0.52 0.26
2 3 1 no 2 3 0.3 17.21 9.49
3 3 2 no 2 2 0.5 2.81 0.47
4 3 2 no 2 3 0.5 48.77 7.23
5 2 1 no 3 3 0.5 13.59 3.05
6 2 1 no 3 4 0.5 80.04 12.04
7 3 1 yes 2 3 0.3 0.24 0.13
8 3 1 yes 2 4 0.3 1.09 0.32
9 3 1 yes 2 5 0.3 10.62 24.34
10 3 1 yes 2 7 0.3 35.06 155.62
11 4 2 yes 2 4 0.3 6.12 0.47
12 4 3 yes 2 4 1 16.92 0.45

TABLE 2. Random partially linear systems

6.4. Linear quantifier elimination as preprocessor. Here we investigate whether the
Loos-Weispfenning linear quantifier elimination algorithm may be useful as a preproces-
sor to theMAIN algorithm. The examples are conjunctions of randomly generated weak
polynomial inequalities with all but one variable existentially quantified. The coefficients
are rational numbers with 3 decimal digit numerators and denominators.#vgives the total
number of variables in the system,#ln gives the number of linear variables,degis the total
degree of the polynomials in the remaining variables,#in gives the number of inequalities,
anddnsgives the density of polynomials. In examples 1 through 6 he coefficients at the
linear variables are polynomials of total degreedegin the remaining variables, in examples
7 through 12 the coefficients at linear variables are constant (this is marked in thecc col-
umn). The algorithmLWPPeliminates the linear variables using the Loos-Weispfenning
linear quantifier elimination algorithm and then calls the Main Algorithm. We require that
the result be a cylindrical solution form so we have to call the Main Algorithm even if all
quantified variables are linear.

TheLWPPis faster in all examples except of 9 and 10, where the number of inequalities
is larger.

REFERENCES

[1] B. Caviness, J. Johnson (eds.), “Quantifier Eliminationand Cylindrical Algebraic Decomposition”, Springer-
Verlag 1998.

[2] G. E. Collins, “Quantifier Elimination for the Elementary Theory of Real Closed Fields by Cylindrical Alge-
braic Decomposition”, Lect. Notes Comput. Sci., 33, 1975, 134-183.

[3] G. E. Collins, “Quantifier Elimination by Cylindrical Algebraic Decomposition - Twenty Years of Progress”,
", in B. Caviness, J. Johnson (eds.), Quantifier Eliminationand Cylindrical Algebraic Decomposition, Springer-
Verlag 1998, 8-23.

[4] G. E. Collins, H. Hong, "Partial Cylindrical Algebraic Decomposition for Quantifier Elimination", J. Sym-
bolic Comp., 12 (1991), 299-328.

[5] H. Hong, "An Improvement of the Projection Operator in Cylindrical Algebraic Decomposition", Proceedings
of ISSAC 1990, 261-264.

[6] R. Loos, V. Weispfenning, “Applying Linear Quantifier Elimination”, The Computer Journal, Vol. 36, No. 5,
1993, 450-461.



14 ADAM STRZEBOŃSKI

[7] S. McCallum, "An Improved Projection for Cylindrical Algebraic Decomposition of Three Dimensional
Space", J. Symbolic Comp., 5 (1988), 141-161.

[8] S. McCallum, "An Improved Projection for Cylindrical Algebraic Decomposition", in B. Caviness, J. Johnson
(eds.), Quantifier Elimination and Cylindrical Algebraic Decomposition, Springer-Verlag 1998, 242-268.

[9] S. McCallum, “Using Cylindrical Algebraic Decomposition”, The Computer Journal, Vol. 36, No. 5, 1993,
432-438.

[10] D. Mitrinovic, J. E. Pecaric, V. Volenec, “Recent Advances in Geometric Inequalities” Kluwer Academic
Publishers, 1989.

[11] A. Strzebonski, “An Algorithm for Systems of Strong Polynomial Inequalities”, The Mathematica Journal,
vol. 4, iss. 4 (1994), 74-77.

[12] A. Strzebonski, “Computing in the Field of Complex Algebraic Numbers”, J. Symbolic Comp., 24 (1997),
647-656.

[13] A. Strzebonski, “Algebraic Numbers in Mathematica 3.0”, The Mathematica Journal, vol. 6, iss. 4 (1996),
74-80.

[14] A. Tarski, “A decision method for elementary algebra and geometry”, University of California Press, Berke-
ley 1951.

[15] S. Wolfram, "The Mathematica Book", 3rd. Ed., 1996.

WOLFRAM RESEARCH INC. AND JAGIELLONIAN UNIVERSITY, 100 TRADE CENTRE DRIVE, CHAM -
PAIGN, IL 61820, U.S.A.

E-mail address: adams�wolfram.
om


