SOLVING ALGEBRAIC INEQUALITIES

ADAM STRZEBONSKI

ABSTRACT. We study the problem of solving, possibly quantified, systeof real al-
gebraic equations and inequalities. We propose a way oésepting solution sets in a
computer algebra system and present an algorithm for cangptite representation. We
also discuss specialized algorithms for solving severglorant special cases, including
finding “generic solutions”, deciding existence of solusp global optimization of alge-
braic functions subject to algebraic constraints, andisghinear equation and inequality
systems. Finally, we give some examples and present ressitsne experiments with our
implementation of the algorithms withiathematica

1. INTRODUCTION

Let us first state the main problem in precise terms. To thi§ k&t us explain what do
we mean by a system of real algebraic equations and ineigsalit

Definition 1.1. A basic algebraic function given by a polynomidki, ..., X,,y) and an
integer k is the function

Rootf : R" 3 xq,...,Xn — Roo f(x,...,%) € R

where Rogfyf(X1,...,X) is the k-th real root of fxy,...,X,y) treated as a univariate
polynomialiny. The function is defined for those values of X, x, for which f(xy,...,X,y)
has at least k real roots. The real roots are ordered by thesiasing value, counting mul-
tiplicities.

A real algebraic function is an arbitrary composition of gobmials, basic algebraic
functions, and rational powers. The domain of a real algébfanction f is a set of those
points inR", for which all basic algebraic functions in f are defined, adigative powers
in f have non-zero bases, and all non-integer rational pawerf have non-negative real
arguments.

A system of real algebraic equations and inequalities inalges x, ..., Xy is an alter-
native of conjunctions of

(X1, .-, Xn) POk (X1, - - -, Xn)
where eaclpy is one of<, <, >, >, =, or #, and each fand g is a real algebraic function.
Apoint(ay,...,an) € R"is a solution of the system if for at least one term of the aHtive,
the point belongs to the domain of all algebraic functionshiis term, and satisfies all the
equations and inequalities in this term.

Example 1.2. We do not require that a solution must belong to domains célgkbraic
functions in the entire system . For instance the solutiaroke

X>0AVX<1IVX<OAY/—Xx<1
is —1 < x < 1, even though onl@ belongs to domains of both radicals.
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Definition 1.3. A quantified system of real algebraic equations and inedjealin free
variables X, ..., X, and quantified variablest. .., ty is a logical formula of the form

Qltl e thmS(tL e 7tm;xl7 e ;Xn)

Where Qis 3 or ¥, and S is a system of real algebraic equations and ineqealith
t]_,...,tm,X]_,...,Xn.

By Tarski’s theorem (see [14]), solution sets of, possihlgtified, real algebraic equa-
tion and inequality systems are semialgebraic. (Algebiaictions can be successively
replaced with new variables, and the condition of beingkttle root of a polynomial can
be written as a quantified polynomial equation and inequalfstem.) In particular they
need not to be finite so we cannot enumerate them. Instead\igga system we will
mean finding a description of the solution set in some simpk @seful standard form
not containing quantifiers. We claim that such a simple arefull$orm is the cylindri-
cal solution form described below, and in the following gmt$ we will give examples
showing how the form is useful for instance in global optiatian of algebraic functions
subject to algebraic constraints, computing multidimenal integrals, and visualization
of semialgebraic sets.

Definition 1.4. A cylindrical form in variables ..., x, with parameters X ..., X_1 IS
defined recursively to be
B1ACLV...VBnhACh

where G is a cylindrical form in variables ¥ 1, ..., X, with parameters x ..., %, and B
is one of

f(xe,....%-1) P X 0 9(X,...,X-1)
fxe,....X%-1) P %
X% 0 9(X1,.. %-1)
X% = (X1, % 1)
true

where f and g ardasicalgebraic functions, ang and o are < or <. A cylindrical form
in no variables is the Boolean constant true.
A cylindrical solution form of an equation and inequalityssym

Qltl e thms(tl, e ,tm;Xl, e ,Xn)

is a cylindrical form in variables x . .., with no parameters describing the solution set
of the system.

In our implementation basic algebraic functions are regméed byMathematicaRoot
objects. (See [15], [13]Mathematicad4.0 no longer factors the defining polynomials of
non-constant Root objects.) Basic algebraic functionsmlyy polynomials of degree less
than three are represented in terms of rational functiodssgoare roots.

Example 1.5. A cylindrical solution form of X+ y?+ 2 < 1is
—1<X<IN—VI=R<y<VI—XA
—V1-x -2 <z<\/1-x2—y2
A cylindrical solution form of

Ix:x+ax+b=0A—-1<x<1
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a<-8A-1+a<b<-1-av
—-8<a<0A—-l+a<b<r(a)Vv
O<a<8A—-l—a<b<r(a)Vv
a>8A—-1—-a<b<—-1+a

where (@) = Roof,;(—8235438 + 1677721§").

The Cylindrical Algebraic Decomposition (CAD) algorithreele [2], [1]) is a construc-
tive proof of the fact that every semialgebraic set, and b@awvery solution set of a quanti-
fied algebraic equation and inequality system, can be repted by a cylindrical solution
form. In Section 2 we present an algorithm (based on CADWallg to compute such
representation. Next, we describe several simpler algostthat can be used in some
important for applications special cases. Finally, we glilbw some experimental results.

2. THE MAIN ALGORITHM
The input is a quantified system

Qltl e thmS(tL e 7tm;Xl7 e ;Xn)

of real algebraic equations and inequalities in free véesk, ..., X, and quantified vari-
abledy,...,tn, wherem may be zero. The algorithm computes a cylindrical solutmnmf
of the system.

2.1. Polynomialization. First we successively replace algebraic functions with rai

ables, starting with the innermost basic algebraic fumior radicals. When replacing

Root f (x1,...,%)) with a new variablez, we add the equatiofi(xy,...,X,,z) = 0 to all

terms of the alternativBwhich contained the replaced basic algebraic function.il8ity,

we replace a radicdl?/@ with zP and add the equatiad§ = f and the inequalityf > 0 to

all terms of the alternativBwhich contained the replaced radical. We keep track of which

variables replace what algebraic functions and of the drdeshich they were replaced.
Next, we put all equations and inequalities in the fofra 0, f <0, f =0, or f # 0,

put all rational functions in the “common denominator” foremd replace equations and

inequalities involving rational functions using equivates

f/g<0 < f>0Ag<OVvfi<OAg>0
f/g<0 < f>0Ag<OVf<OAg>0
f/g=0 < f=0Ag#0
f/g#£0 < f£A£0Ag#0

Finally, we put the, now polynomial, equation and ineqyadigstem in the disjunctive
normal form.

2.2. Projection. This is the projection phase of the CAD algorithm (see [Z]).[First we
project with respect to the variables replacing algebmaicfion, in the reverse replacement
order. Then we project the quantified variables startindhwlite innermost quantifiers
i.e. fromty, tot;. Finally, we project out free variableg, throughx,. We can reorder
variables within blocks of identical quantifiers and withire free variables if we do not
have a preference as to the order of free variables in theisoluln this case we use a
heuristics attempting to minimize the size and degreeseoptbjection. We use two types
of projection.

We start with the “short projection”. If there are any eqoatl constraints present or
if the projected variable replaces an algebraic functioa,use the equational constraint
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case projection suggested in [3]. If there are several @mpaltconstraints, we select the
pivot (and the projection variable, if we have a choice) blamefirst whether its all factors

have constant leading coefficients, and second on how lotg tegree. Equational con-
straints with nontrivial contents are disqualified. We @gpte the remaining equational
constraints using the fact that a resultant of equationastraints is an equational con-
straint. After we run out of replacement variables and eiquat constraints we continue
with the McCallum’s projection operator for well-orientsgts of polynomials (see [7],

[8]).

The solution form construction phase may fail if the shoxjection was used, and
one of the polynomials of McCallum’s projection becomesntiteally zero on a positive-
dimensional cell, or if an equational constraint used avatfiecomes identically zero on
a cell. In this case we use the full projection operator dbsdrin [5].

2.3. Construction of solution form. Since we are using algebraic functions to describe
the solution set we, as opposed to the classical CAD algoritto not need to generate
and store all the cells before constructing the solutiomforTherefore we can use the
following recursive algorithm RCSF which, on tkeh recursion level, generates the solu-
tion form for the firstk variables (in the inverse projection order) belonging tpecified
cell. (Remember, in this order the free variables come fingn the quantified variables,
outermost quantifiers first, and at the end the variablesoémy algebraic functions, in the
replacement order.) To generate the full solution we calBR®n the 0-th recursion level.

Algorithm 2.1. RCSF

Input:

e cell_datacontains information about the cell over which we are cartding the
solution. This includes a sample point in the cell, i.e. ealtor the firstk vari-
ables, and information whether the cell is zero-dimendiand which (not all)
elements of the alternative fare marked as known to Halseon the cell.

e proj_datacontains all the information from the first two phases of thgoathm,
i.e. information about the system of polynomial equationd mequalitiesS, the
variables replacing algebraic functions, the subsequeiggtion types, projection
variables, quantifiers, and sets of projection polynomials

Output:

o A formula representing solutions of the system, for the frgariables belonging
to the input cell. If thek+ 1 -st variable is a free variable, it is a cylindrical form
in the free variables left, with the firétvariables as parameters. Otherwise it is
trueor false

(1) Letvbe thek+ 1 -st variable.

(2) If vis a variable replacing a basic algebraic functiRwoy, ,f, find the real roots
of f iny, after replacing the firdt variables with coordinates of the sample point.
(The chosen projection order guarantees thafter the replacement becomes a
univariate polynomial.) If there are at legstoots, counting multiplicities, choose
thep-th root as thé&+ 1-st coordinate of the sample point, and check if substituti
of the new sample point makes any more elements of the aliezria S false
Otherwise, choose 0 as thet 1-st coordinate and mark all the elements of the
alternative inSwhich contairv as known to bd alseon the cell. If all the elements
of the alternative irs are known to befalseon the cell returnfalse If v was the
last variable returtirue, else calRCSFrecursively.
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(3) If v is a variable replacing a radicd!9, let a be f with the firstk variables
replaced with the coordinates of the sample point. The astiprojection chosen
guarantees thatis a constant. I& is honnegative, choose thke- 1-st coordinate
of the sample point to ba/9, and check if substitution of the new sample point
makes any more elements of the alternativeSirfalse Otherwise choose the
coordinate to be 0 (sincé > 0 was included in all elements of the alternative
containingv, these elements are already marked as known tbabss). If all the
elements of the alternative Bare known to befalseon the cell returnfalse If
v was the last variable retutnue, else calRCSFrecursively.

(4) If vwas projected out using an equational constrainptstbe all the real roots
of factors of the pivot, after replacing the fidsivariables with coordinates of the
sample point. Otherwise, lgttsbe a set of all the real roots of tlket 1-variate
projection polynomials, after replacing the fikstariables with coordinates of the
sample point, and of rational points, one in every intered &fter removing the
roots from the real line. The algorithm can fail at this pafnt was projected out
using an equational constraint and any of factors of thetfiescomes identically
zero after the substitution, or if the McCallum’s projectizvas used, the cell is
not zero-dimensional, and one of the projection polynosiigcomes identically
zero after the substitution. In this case we start over withfull projection. If
the McCallum’s projection was used, the cell is zero-diniemal, and one of the
projection polynomials becomes identically zero after siibstitution we use a
suitable derivative instead, as described in [8].

(5) Take the subsequent elementptifas thek+ 1-st coordinates of the sample point,
and determine the solution of the system over the correspgroell. First check
if substitution of the new sample point makes any more elésgfithe alternative
in S false If all the elements of the alternative $are known to bef alseon the
cell the solution isfalse If vwas the last variable, the solutiortisie. Otherwise
we compute the solution callinrgCSFrecursively.

(6) If vis a quantified variable we may return the answer without iloglat all the
pts The possible solutions of the system over the cells coording to elements
of ptsaretrue and false since all the remaining variables are quantifiedv i$
quantified by the existential quantifier and a solution oherdell corresponding
to one of theptsis true we returntrue. If v is quantified by the general quantifier
and a solution over the cell corresponding to one of pheis falsewe return
false If we went through all thegtswithout returning early we returmalsefor
the existential quantifier anmlue for the general quantifier. Because in this case
we may find the answer without looking at @iiswe want to try the easier cases
first. To this end we take the elementspikin 5. in order of increasing degrees
of their minimal polynomials.

(7) We are left with the case wheris a free variable. The polynomials used in 4. to
computeptsare delineable on the cell, therefore the different reatsa@s these
polynomials on the cell are values of non-intersecting dafijebraic functions
given by these polynomials. We keep track of the basic aljelfunction cor-
responding to each root, and so we can write the part of ansareesponding
to each of the elements gits as the conjunction of one of=f, f <v < g,
v< f,andv > f, and the solution of the system over the cell correspondirige
element, wherd andg are the basic algebraic functions corresponding to the ap-
propriate roots. I was projected out using an equational constraint we rehen t
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alternative of the constructed parts of the answer, eldeeifsblutions of the sys-
tem over the cells corresponding to adjoining elemengstsére identical we join

the corresponding parts of the answer and return the atteenaf the resulting

formulas.

For finding roots of polynomials with algebraic number caséints we use the algorithm
described in [12], modified to compute real roots only. Toidwepeating computations
we cache resultant, factorization, and real root isolatiomputations.

The recursive nature of the algorithm and joining of thesalhich can be joined in
7. results in a much lower memory usage of our algorithm tihan of the classical CAD
algorithm. In practice we have not seen an example in whietsgface complexity rather
than the time complexity would be the main limitation. Stepd the algorithm allows
parallelization of computations, however our implemeintats purely sequential.

3. THE FULL DIMENSIONAL CASE

An important category of problems for which the algorithrmdaze substantially sim-
plified is when the solution set of the inequality system ismpmpr when we are interested
only in the full dimensional part of the solution set. Onelsaase is the decision problem
for systems of strong polynomial inequalities, i.e. thelyeon of deciding whether an open
semialgebraic set is nonempty. In this case the originakaygontains only strong poly-
nomial inequalities and all variables are existentiallatified. In [9] McCallum noticed
that it suffices to construct sample points in full dimensiocells only, thus eliminating
the need for any algebraic number computations. In [11] thea has shown that in this
case we can also use a simpler projection operator. Here @gept an extension of this
idea to systems containing free variables.

Suppose we have a system of real polynomial inequalities@uoations, algebraic func-
tions, or quantifiers). In some applications, like multiginsional integration or graphical
visualization, it may be enough to know a “generic” solutgat, which is correct “up to a
lower dimensional set”. Let us be more precise.

Definition 3.1. Let S be a system of real polynomial inequalities in n vagablnd let
A C R" be the solution set of S. A semialgebraic s&t R" is a generic solution set of S
if the error set A BUB\ A is at most n- 1-dimensional.

The following algorithm computes a generic solution set] gives an at most — 1-
dimensional set containing the error set.

Algorithm 3.2. GCAD

Input:

e A systemSof real polynomial inequalities.
e A cylindrical solution formula describing a generic sotrtiset ofS, and a set of
equations, such that the error set is contained in the urfithred zero sets.

Output:
e A cylindrical solution formula describing a generic sotrtiset ofS, and a set of
equations, such that the error set is contained in the urfithred zero sets.

Let us first note that ifs contains weak inequalities or inequations, & S with weak
inequalities replaced with their strong versions and iradiquns removed, then a generic
solution seB of S is a generic solution set & and the error set d as a solution oBis
contained in the union of the error set®fs a solution o8 and the zero sets of equations



SOLVING ALGEBRAIC INEQUALITIES 7

corresponding to the weak inequalities and the inequatibnerefore in the following we
may assume th&consists only of strong inequalities.

For a set of polynomialpolys let SFRR polys) denote a set of square-free and rela-
tively prime polynomials multiplicatively generatingplys For a set of square-free and
relatively prime polynomialgjolys let GP(qolysv) denote the projection ajolyswith
respect tos used in [12]. By definitionGP(qolysv) consists of the leading coefficients,
discriminants, and pairwise resultantsquflys

Let Sbe a system of strong polynomial inequalities in variablgs. . , x,, transformed
to a form with zero right hand sides of inequalities, anddetysbe the set of left hand
sides of inequalities i15. First we compute the set of projectiopsjs= (prp,...,pri),
wherepr, = SFRR polys and pry = SFRRGP(pr¢.1,X+1)). Then we obtain the solu-
tion formula and the equations for the error set calling thiéoWving recursive algorithm
with k= 0.

Algorithm 3.3. RGCSF

Input:

e fprojs=(prn,..., Pres1)

e eprojsis fprojswith x;,...,x replaced with the (rational number) coordinates
of a sample point of th&-dimensional celt over which we are constructing the
solution. All polynomials ofpry have constant non-zero signsan

e ineqsis Swith xq,..., X replaced with the coordinates of the sample point.

Output:

e A cylindrical form cfmin Xgy1,...,Xy With X1,...,Xx as parameters, and a set
eqgnsof polynomials inxy, ..., X, such that for any poind = (as,...,an), with
(a1,-...,a) in the cell, ifais not a zero of any oéqnsthena is a solution ofSiff
ais a solution ofcfm

(1) If inegsistrueor falsewe returnineqsand no equations.

(2) Letpsbe the last element &projs psis a set of univariate polynomials iy, 1.
Isolate roots ofps and find rational numbergtsone in every interval left after
removing the roots from the real line.

(3) Polynomialspry, 1 are delineable on. (Their leading coefficients, discriminants,
and pairwise resultants have constant non-zero signseydtive a fixed number
of real roots each and the roots do not intersect.) Henceethleroots of these
polynomials orc are values of non-intersecting basic algebraic functiovegoy
these polynomials. If we take the subsequent elemenssafs thek + 1-st coor-
dinates of sample points, we get sample pointspi-dimensional cells on which
elements ofpry 1 have constant non-zero signs. We d&CSFrecursively on
each such cell.

(4) We can write the cylindrical form corresponding to eatdneent ofptsas a con-
junction of one off <v< g,v< f, andv > f, and the cylindrical form returned
by the recursive call, wheré andg are the basic algebraic functions correspond-
ing to the appropriate roots. Aegnswe return all the polynomials given by the
recursive calls, and all elements ., 1 whose root separates two adjoining cells
over whichS has solutions. If for cells corresponding to adjoining etens of
ptsthe cylindrical forms returned by the recursive calls areniical we join the
corresponding cylindrical forms in the answer. We reture #fternative of the
resulting formulas.
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Example 3.4. GCAD was used by Roger Germundsson in InequalityGraphics pa&ckag
Here is a graphical representation of the solution set ofjunity system

X+ +Z2 <IN <X+7P-1
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As another application of th@ CADalgorithm we can compute the volume of the figure
above, which is 6#/3. Here the integration is by far more time consuming than the
GCADcomputation. We can also use the cylindrical solution fosroampute the volume
numerically. (The results of numerical and symbolic conagioh do agree.)

4. GLOBAL OPTIMIZATION

The problem we investigate in this section is to find the infimof values of a real
algebraic functionf (xq,...,%n) subject to algebraic equation and inequality constraints
S(x1,.--,%n), and, if possible, find a point in which the infimum is attain@éithe solution
set of Sis not compact the infimum may not be attained.)

The problem is equivalent to finding the infimuyp of values of the new variable
y on the solution set of the following quantified system of ralglebraic equations and
inequalities,

(X1, %n) P S(Xy ey Xn) AY > F(Xa,. ooy Xn)
and if possible a poir(iay, . . . , a,) satisfying the constrainand such thatins = f(ag, ..., an).

For this purpose we use a modified version of the Main AlgarithVe use the identical
polynomialization and projection phases. The last prigecgives us a set of univariate
polynomials iny. In step 5. of first call t(RCSF, with the main variable, we orderpts
with respect to their increasing values, and EallSFrecursively with subsequent elements
of ptsuntil we get answetrue. We also modifyRSCFto return a sample set of values for
existentially quantified variables which satisfies the systif the smallest element pts
for which we getrue from the recursive call, is a root of one of the projectionymamials,
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then itis the infimum and the sample point returned by therseeeicall is a point at which
the infimum is attained. Otherwise the infimum is equal to drgést root of one of the
projection polynomials smaller than the elemenptd or —e if there are no smaller roots,
and the infimum is not attained.

To find an infimum of a polynomial or a rational function sultjexstrong polynomial
inequality constraints (or if we know that the set of poingsisfying the constraints is
contained in the closure of its interior), we can use a simgilgorithm based on ideas from
Section 3. We project out variablas, . ..., X, using the projection described in Section 3,
find rational numbergts one in every interval left after removing the roots of thetlas
projection from the real line, and then run recursively a ificdtion of RCSF,with all
X1,-..,Xy existentially quantified, over the subsequets in order of increasing values,
until we gettrue. Then the infimum is equal to the largest root of one of the quiipn
polynomials smaller than the current elementb§ or —o if there are no smaller roots.
The modifiedRCSFconstructs only full dimensional cells, i.e. in step 4. wkaly the
rational numbers between the roots of projection polyndsnia

5. THE LINEAR CASE

For linear decision problem, i.e. for solving quantified atjon and inequality systems
with all variables existentially quantified and all equasand inequalities linear we use a
method based on the Simplex algorithm from Linear Programgmbince

Ix:a(x) vVb(x) < Ix:a(x) Vv Ix: b(x)

we may assume that the system is a conjunction of equatiahmaqualities. We use the
following algorithm.

Algorithm 5.1. LINSIM

Input:
e A systemSwhich is a conjunction of linear equations and inequalities, . . . , Xx.
Output:

e true or false depending on whethe has solutions. If the answer isue the
algorithm can also give a poifidy, . . . ,an) satisfying the systers.

(1) As in the Simplex algorithm, we add new variables to replaequalities with
equations, with the only difference being that for stronggualities we require
that the new variables be strictly positive.

(2) We Gaussian eliminate the original unrestricted vdesabWe get a linear system
LS, of equations in positive and non-negative variables, andpgrer-triangular
matrix which allows to find values of the original variablesice we have a solu-
tion of LS; .

(3) We use the first phase of the Simplex algorithm to find atgwiof LS, with all
variables nonnegative. If there is no such solution we refaise

(4) We look if there is a variable which should be positivet, isizero in the solution.
If no we compute the values of the original variables from tiatrix in step 2.
and returrtrue. Otherwise we use the second phase of Simplex algorithmdo fin
the maximal valuenaxof the variable.

(5) If max= 0 we returnfalse Otherwise we set the value of the variablentax/2
(the solution set of a conjunction of linear equations aretjuralities is convex),
use the first phase of Simplex algorithm to find non-negatolat®ns for the
remaining variables, and go to step 4.
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In [6] Loos and Weispfenning describe an algorithm whicbhwall to eliminate a quantifier
if all the equations and inequalities of the system are liivethe quantifier’s variable. The
result of the elimination however is not given in the cyliiwdit form. We use this algorithm
as a preprocessor to the main algorithm, i.e. we eliminaédrthermost quantifiers if the
system is linear in their variables and then call the maiwigm on the result. In the last
section we compare this approach with the main algorithrhavit the linear preprocess-
ing. We also use this algorithm whenever we do not insist encifindrical form of the
result (for example because there are too many free vasabk®o high degrees).

6. EXPERIMENTAL RESULTS

In this section show some experimental results obtaineld autr implementations of
the algorithms presented in this paper. The algorithms weptemented in the C kernel
of MathematicaThe examples were run on a Pentium I, 233 MHz computer witM&4
of RAM. The timings are in seconds.

6.1. The full solution vs. the generic solution.Here we use strong inequality examples
given in [9] . We compare the timings of deciding the problemith all variables exis-
tentially quantified (th&EC column), finding a cylindrical solution form using the Main
Algorithm (theMAIN column), and finding a cylindrical solution form for a gereesblu-

tion set using th&sCAD algorithm (theGCAD column). The cylindrical forms are com-
puted in the(x,y,z) order of variables. Thé&c columns give the total number of cells after
putting the solutions given bMAIN andGCAD in the disjunctive normal form (answer
falsecounts as no cells). Thie column gives the number of equations whose solutions
cover the error set, as given by tCAD algorithm. Following the notation of [9] let us
put.

Bl = xX+y?+7<1
B2 = (x—172%+(y-172%+(z-1)°%<1

B3 = (x—1)2+(y—1)2+(z+%)2<1
B4 = (x—g)2+(y—2)2+22<1

Cl = X+y?+2+2yz—4y—4z+3<0A
y—1l<zAz<y+1

C2 = X4y +2+2yz—4y—4z+3<0A
y+l<zAnz<y+2

T = 24 (2P+2¢+6)2+y + 23472 —
10y +x*—10* +9< 0
HB1I = BLAX+y+z<0
HB2 = B2AX+y+z>3
HB3 = B3/\x+y+z<g
HT = TAx+y<O

The decision algorithm uses a heuristic to determine theratiprojection, and because
of this the timings oDEC andGCAD may differ even if there are no solutions.
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| inequalies | DEC | MAIN | #c | GCAD | #c | #e]

B1AB2 011} 392 1| 017 |10
B1AB4 0.09| 067 | 0| 008 | 0O | O
B1AB2AB3 091 |7305| 2| 132 |2 | 3
B1AB2AB4 0923045 0| 059 |0 | O
B1AC1 0111762 1| 065 | 1|1
B1AC2 0.16 | 3162 0| 092 |0 | O
TACL 0.58 | 774.8| 17| 555 | 9 | 8
TAB2 0.7 | >3000| ? 11 12
HB1AHB2AHB3|12.23| 415 | 0| 376 | 0 | O
HTAHB2AHB3 | 9.72 | >3000{ ? | 699 | 0| O
TACIAB2 2.53 | >3000| ? | 30.79 | 28| 31
HTACLAHB2 | 29.2 | >3000| ? | 19.74| 0 | O

TABLE 1. Strong inequalities

6.2. Equational constraints. We compare timings of the Main AlgorithnMAIN) and a
version of the algorithm which does not use the special casiegiion using equational
constraintsNOEQQ.

(1) Catastrophe Surface and Sphere from [8]
X+ +Z2=1ND+x2+y=0

MAIN returns a solution containing 8 cells after 1.18 secoMNISEQCreturns a
solution containing 16 cells after 81.26 seconds.
(2) Solotareff’s problem from [8]

dbduav: —1<u<v<lAb<2A
ut+2u —al’ —bu+a+b—3=0A
vV +2v¥¥ —a—bv+a—b+1=0A
4ud + 6U2 — 2au— b= 0A
4B +6v2—2av—b=0

Both algorithms retura = Roo};(81y® — 180y + 448y — 432), MAIN after 1.86
secondsNOEQCafter 41.21 seconds.
(3) When the quintio® + ax? + bx+ ¢ has at least two different real roots?

IxTy: X+ ax +bx+c=0Ay +ay+by+c=0AxX#Y

Both algorithms return a solution consisting of 4 ceN$AIN after 21 seconds,
NOEQCafter 371 seconds. The solution is

a<0 A (b<r(aAri(ab)<c<ry(ab)v
b=r(a)Ars(a,b) <c<ry(ab)v
r(a) <b<s(@Ari(ab) <c<ry(ab))Vv
a>0 A b<s(aAri(ab)<c<rz(ab)
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where
r(@ = Rooy;(320/° +27a%
s(@ = Root(80y*—27a%
re(@b) = Rooyk(3125/ + 2250°by? — 1600b%y +

1082% + 2560° — 27a%h?)

(4) When the difference between the largest and the smatiesof the cubicd +
ax+bis atleast 1?

Rool,3(y* + ay+ b) — Root1(y* +ay+b) > 1
Both algorithms return

_ _33 _ a3
a< AN T cp< BTy Logcdn

3v3 3v3
\/—4a3—9a2—6a—1 —4a3—9a2—6a—1
- 33 sbs 3V3 v
a=-3Ab=0

MAIN after 2.46 second$JOEQCafter 9.12 seconds.

6.3. Global optimization. Here we use our global optimization algorithm and discuss th
use of its two versions, one constructing all c&ISGOand the other constructing only
the full dimensional cell&DGO.

(1) A geometric problem from [10]. Find all values lofor which the inequality
a®+ b+ ¢ > 3abc+ k(a—b)(b—c)(c—a)

is true for alla, b, andc sides of a triangle. Since by permutatiorepb, andc we
can change the sign of the coefficienkatve see that the allowable values for
form an interval symmetric with respect to zero. Therefore @nough to compute
the maximum ok for which the inequality is true for al, b, andc, which is the
same as the infimum df for which there are, b, andc, such that the opposite
inequality is true. So we need to compute the infimurk oh

a>0Ab>0Ac>0Ak>0A
a<b+cAb<ct+aAnc<a+bA
a®+b®+c3 < 3abc+k(a—b)(b—c)(c—a)

We have strong inequalities only, so we can BB& O, which returnﬁoop.z(y“ —

72y? — 432) after 12.35 seconds. In radicals, the answery&92- 6v/3. ACGO
did not do this example in an hour.

(2) Maximize,/x+ ,/y on the eIIipseﬁl—2 + % = 1. We can solve the problem directly
usingACGOin 2.32 seconds, or we can notice that the maximum is equakto t

supremum ok +y on % +y§4 < 1, which we can compute usirfPGO in 0.12
seconds. The answerRoot,1(y'2 — 398 — 465/* — 2197), with ACGOwe also
get a point at which the maximum is attained, WRRGO we don't.

(3) Find the minimal distance between the largest and thédlesha@oot of the cubic
x3 4+ ax+ b assuming the cubic has three real roots and its discrimisant. We
need to us&CGOhere. We get the answef/2 for a= —2-2/3 andb = 0, after
5.58 seconds.
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| example] #v [ #In | cc | deg] #in | dns | MAIN | LWPP |

1 3/ 1 |no|l 2| 2 03] 052 0.26
2 3| 1|no| 2| 3|03]17.21| 949
3 3|2 |no| 2| 2 |05] 281 | 047
4 3|12 |no| 2| 3 054877 7.23
5 2| 1|no| 3| 3|05]1359| 3.05
6 211 |no| 3| 4 |05 80.04| 12.04
7 3|1 |yes| 2 | 3|03] 024 | 0.13
8 3|1 |yes| 2 | 4 |03] 1.09| 0.32
9 3|1 |yes| 2 | 5|03 10.62| 24.34
10 3|1 |yes| 2 | 7 |03] 35.06]| 155.62
11 4 | 2 |yes| 2 | 4 |03]| 6.12 | 0.47
12 4 | 3 |yes| 2 4 1 |16.92| 045

TABLE 2. Random partially linear systems

6.4. Linear quantifier elimination as preprocessor. Here we investigate whether the
Loos-Weispfenning linear quantifier elimination algonthmay be useful as a preproces-
sor to theMAIN algorithm. The examples are conjunctions of randomly gatieelrweak
polynomial inequalities with all but one variable existaily quantified. The coefficients
are rational numbers with 3 decimal digit numerators ancbd@nators #v gives the total
number of variables in the syste#in gives the number of linear variabletegis the total
degree of the polynomials in the remaining variabi#s gives the number of inequalities,
anddnsgives the density of polynomials. In examples 1 through 6defficients at the
linear variables are polynomials of total degdsgjin the remaining variables, in examples
7 through 12 the coefficients at linear variables are congthis is marked in thec col-
umn). The algorithmrLWPP eliminates the linear variables using the Loos-Weispfegni
linear quantifier elimination algorithm and then calls thaiMAlgorithm. We require that
the result be a cylindrical solution form so we have to cadl Bhain Algorithm even if all
guantified variables are linear.

ThelLWPPis faster in all examples except of 9 and 10, where the nuntheequalities
is larger.
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